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1. INTRODUCTION

Quite generally the filtering problem can be described as follows. Given a stochastic process x(f),
rel CR, ie. a sequence of random variables, and a (more or less related) second process y(), tel, it
is desired to find the best estimate of x at time z, i.e. the best estimate of x (1), given the (past observa-
tions) y (s), 0<<s<t. Usually I =Z (discrete time) or ] =R (continuous time).

Much related problems are prediction: calculate the best estimate of x(t) given y(s), 0<s<t—r,
and smoothing: calculate the best estimate of x (1 —r) given y(s), 0<s<t. In all these it may of course
be the case that y(z) and x (1) are the same stochastic process.

In these lectures we shall be concerned with the (model) case that the continuous time processes
x(z) and y (1) are related as follows

dx(t) = flx())dt +Gx()dw(r), x(1)eR”, w(t)eR™, (L1)
dy(t) = h(x(t))dt +dv(t) , y(1)eRP, v(1)eRP (1.2)

with initial conditions x(0)eR", y(0)eR?. Here w(r) and v(t) are supposed to be independent
Wiener noise processes also independent of the initial random variable x(0), and f(x), G(x) and h(x)
are known vector and matrix valued functions. Thus w(¢) and v(t) are white noise and (1.1) can be
looked at as a dynamical system

x(@1) = flx(@) (1.3)

subject to continuous random shocks whose direction and intensity is further modified (apart from
being random) by G (x(#)). And equation (1.2), the observation equation, says that the observations at
time ¢

y(&) =y O+ [h(x(&)ds , jO=h(x() (14)
0

are corrupted by further (measurement) noise v (). Technically speaking, equations (1.1), (1.2) are to
be regarded as Ito stochastic differential equations; cf section 5 below for more remarks. )
The phrase ‘best estimate’ of x(f), or, more generally, of an interesting function ¢(x (1)), is to be

understood in the mathematical sense of conditional expectation i(t)=l:3[x (Oly(s), Oss=<t], or, in
the more general case, E[¢(x(1))|y(s),0<s<!] This is a mathematically well defined object.
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Unfortunately the (mathematical) proof of this statement contains nothing in the way of methods of
calculating these conditional expectations (effectively).

There are many techniques and approaches to filtering. It is definitely not the idea of these lectures
to give a general survey of the field. Instead I shall try to give an account of one particular approach
pioneered by Roger Brockett, Martin Clark and Sanjoy Mitter, [6,7,8,9,53,54] which is variously
known as the Lie-algebra approach, the reference probability approach, or the unnormalized density
approach. This is a rather recent set of ideas, which has several merits. First, it takes geometrical
aspects of the situation into account. Second, it explains convincingly why it is easy to find exact
recursive filters for linear dynamical systems while it is very hard to filter something like the cubic
sensor - for over 20 years a notoriously hard case to handle. The notion of a recursive exact filter will
be discussed below in section 2. Thus excitement about this approach was high in the very first years
of the 1980’s. The book [34] well reflects this. Since then interested and excitement have waned per-
ceptibly. There are also several connected reasons for this. First the method itself indicates clearly -
through this remains to be proved in one sense or another - that one can not expect many cases
(beyond the case of linear systems) where finite dimensional exact recursive filters exist. ‘Generally’, it
seems, such filters will not exist and though there remains the tantalizing possibility of whole new
classes of useful models for which they do exist, there are at the moment no clear ideas as to how and
where to look for them. All the same a number of new filters, both ‘model cases’ and filters of impor-
tance in practice, have been discovered using these Lie-algebra ideas [4,13, 18,19,47-51,56]. Since exact
finite dimensional filters can not exist in many cases it is natural to look for approximate ones. Here
it is not immediately apparent how to proceed on the basis of the Lie-algebra approach, and little has
been done.

Still there are a number of very promising (heuristic) ideas, which definitely work in some cases. It
is the second purpose of these lectures to examine some of these ideas for obtaining approximate
recursive filters. All seem to lead to far from trivial unsolved, and possibly quite difficult, mathemati-
cal questions, which invite major research efforts.

2. RECURSIVE FILTERS

The basic quantities we have available at time ¢ are observations up to and including time ¢, i.e. the
y(s), 0<s<t. A priori an algorithm to calculate x(¢), say, could involve all the y (s). Now if the obser-
vations come in at a high rate and the algorithm really needs all the y(s) each time an estimate is cal-
culated, one is likely to run into (i) long computation times, and (ii) storage (memory) problems. In
such a situation it would be much more practical and much nicer if it were possible to calculate
%(t +dt) on the basic of X(f) and the new information y(f +dr) which has come in. (It is easier to
think of this situation in discrete time with df =1.)

This turns out to be too optimistic. Such filters almost cannot exist (in nontrivial situations). The
next best thing would be the existence of some other quantity £(z) which does have the recursive
update property “4( +dt)=a(4(1),y(1 +dt)” and from which the desired quantity can be directly cal-
culated. Of course then £(f) must be a reasonable quantity and not some hard to handle infinite
dimensional object like the time history function {y(s):0<s<t} itself. E.g. &) could be a finite
dimensional quantity, or something in an infinite dimensional space describable by a finite number of
parameters or well approximatable in terms of a finite numbers of parameters.

Such filters do exist sometimes. E.g. in the case of linear time invariant systems

dx(1) = Ax(t)dt +Bdw(t), xeR", weR™ - 2.1)
dy(t) = Cx(dt+dv(t), yeRF, veR?

where A4, B,C are constant real matrices of dimensions nXn, n Xm, p Xn respectively, and where w (1)
and v(r) are Wiener noise processes, independent of each other and also independent of the initial
random vector x(0)eR. (One sets y(0)=0). In this case one has the well-known Kalman-Bucy filter
for the conditional state
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dP(1) = (AP(t)+P(1)AT+BBT —P(t)CTCP(1))dt (22)
dm(t) = Am(t)dt + P(t)CT(dy(t)— Cm(r)dr)

Thus in this case the quantity §)=(P(z).m (1)) Qas the desired “recursive updating property”, and
the quantity we want to filter for, i.e. the quantity x(r) in this case, is obtained by a simple projection
x(y=m).

All this leads to_the following initial definition of a finite dimensional exact recursive filter for a
quantity (statistic) ¢(x (1)). By definition such a filter is a finite dimensional dynamical system of the
form

d50) = a@n)de+ S BEOd @) . HneM | 2.3)
J=1

where () is the j-th component of y (z), together with an output map
x (1)) = ¥&D) 2.4)

Here M is supposed to be a finite dimensional manifold and the « and B, are smooth vectorfields on
M. (One can usually think of M as an R" so that (2.3) becomes an ordinary stochastic differential
uation).

erf course, more generally, one could let the @ and §; in (2.3) depend on the y; as well. This does
not bring very much more because we can, so to speak, add the y),..,y, to the state variables
x1.....x,. However, certainly more general potential filters could be consideredp then (2.3); in particular
one can allow the output map v at time ¢ to depend explicitly on y;(t),...,),(t), and we shall have
occasion to use this. Again this can be taken care of by extension. This time by extending the filter
state vector &(¢) to the filter state vector (£(2),y(t)).

3. ROBUSTNESS

The y(t) are stochastic processes. As it stands (2.3) is a stochastic (partial) differential equation and as
such its solutions are only defined apart from a set of measure zero. On the other hand the possible
observations paths are piece wise differentiable and these constitute a set of measure zero (in the
space of all paths under Wiener measure or therewith mutually continuous measures). Thus solutions
of (2.3) may, so to speak, well be undefined precisely on the possible observation paths, [14].

More importantly - in my view - in actual situations we do not have available the stochastic process
¥(2) but just one possible realization of it. Thus it would be nice if (2.3) made sense pathwise and if it
could be replaced with something involving just functions of the y;(¢),...,),(¢), say polynomials, and
not their derivatives.

For the filter (2.2) this can be done. The transformation  =m — PCTy yields

dm = dm—PCTdy —dPCTy=Amdt+PCTdy—PCT Cmdt—PCTdy—dPCTy
= (A —PCTC)mdt —(PATCT+BBTCT)ydr

or

%m = (4 -PCTC)m—(PATCT+BBTCT)y

g—t-P = AP+PAT+BBT—PCTCP 3.1
x(t) = m(@)+P()CTy()

a set of equations which makes perfect sense for an arbitrary single continuous but possibly almost
everywhere non-differentiable observation path y (¢).
Such filters are called robust.
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4. THE UNNORMALIZED DENSITY APPROACH R
One obvious approach to try to find a filter for, say, the conditional state X(r) is to try to derive a
differential equation for it. This can actually be done [44-46) and yields

di = f—(Cchy)—5h Yhds +Gehy) — %k dy @)

where f and & stand for f(x(1)) and A(x()) and a~ over a symbol means taking the conditional
expectation. The trouble with this equation is that it involves the expectations f, h and (xh7) (and
these are for nonlinear f,h of course not equal to f (%), h(x) and xh7(X)). One can also write down
equations for the conditional quantities S b, xh T, but these then involve conditional expectations of
still more complicated expressions etc, etc. As a rule this process will not stop and there results an
infinite system of equations.

The conditional density p(x,?), that is the density of the stochastic variable X at time ¢, satisfies a
nicer looking equation

dp = Tpdt+(h—h)T(dy~hdtp 42)

Given p(1,x), h (at time {) is calculated by h = [(hx)p (x,t)dx and inserting this gives in any case an
integro partial differential equation of recursive type.

Still nicer is the equation satisfied by a certain unnormalized version p(x,?) of the conditional den-
sity. And it is this equation, the so called Duncan-Mortensen-Zakai equation, or DMZ-equation,
which is at the basis of the Lie algebraic approach. Here unnormalized means that p(x,t)=r(t)p(x,1)
for some (unknown) function r(f) depending only on time (and not on x).

The DMZ equation for p(x,r) reads ([20,33,34,55,65])

dp(x,t) = Ep(x,t)dt + éhj(x)p(x,t)dyj(t) 4.3)
j=1
where £ is the second-order semi-elliptic operator (in the x,,...,x,) defined by
Foly) = L % Ty gy— 9 ¢
o) = 725 (CWOE )~ 3 5019 (44)
Here (G(x)G”(x));c is the (j,k)-entry of the nXn matrix GGT and f, is the i-th component of f.

Note that (4.2) is recursive, but being a partial stochastic differential equation, it is of course infinite
dimensional. Note also that for the calculation of conditional expectations the unknown factor r(t)
does not matter much. Indeed r(t)= fp(x,t)dx and correspondingly, if ¢(x) is some interesting func-
tion of the state, one has that -

Hx () = [o(x)p(x,t)dx/ [p(x,2)dx 45)
R" R"

5. IT0 AND FISK-STRATONOVIC STOCHASTIC DIFFERENTIAL EQUATIONS

Most of the equations written down so far, eg (1.1), (1.2), 2.1), (2.2), (2.3), (4.1), (4.2), (4.3) are sto-
chastic differential equations. It is definitely not my intention to give extensive explanations of what
this means, but a few words seem in order. The meaning of (1.1) e.g. is that there is a well defined
notion of stochastic integral such that

x(t) = xO) + [f(x@O)dr + [Gx(t)aw(r) G-n
0 0

There are in fact several possible definitions. Two of these are the Ito integral and the Fisk-
Stratonovi¢ integral [1). And they are definitely different in the sense that different stochastic
processes result depending on whether the second integral (5.1) is interpreted in the Ito or Fisk-
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Stratonovi¢ sense. Both definitions have their advantages and disadvantages. The Fisk-Stratonovié
integral has the major advantage that the usual rules of the differential-integral calculus still hold.
This makes it the preferred interpretation on manifolds. Thus equation (2.3) is intended to be read as
a Fisk-Stratonovi¢ equation.

The original system (1.1), (1.2) however is a set of Ito equations and the DMZ equation (4.3) in
also an Ito equation.

There is a fairly simple conversion rule from Ito equations to Fisk-Stratonovi¢ equations and vice
versa as follows.

Let
dx = f(x)dt+G(x)dw (), xeR", weR™ : (5.2)
be an Ito stochastic differential equation. Then the equivalent Stratonovi& equation is
l m n aG
dx = f(x)dt~.2‘121’21(3;)j(;’jdt+G(X)dw(t) (5.3)
3G, i e 3G ., 3G, _ Gy 3Gy, ~
Here (ax,- ) is the j-th column of the nXn matrix o, ie. (ax,- ) =( 3% " o ), and Gj; is

the (i,j)-entry of the nXm matrix G. Here equivalent means that the same stochastic processes x(t)
occur as solutions of the Ito equation (5.2) and the Fisk-Stratonovi¢ equation (5.3).
Note in particular that for an Ito equation of bilinear type

dx = Axdt+k§:lkadwk(t) (5.4)
the equivalent Fisk-Straton;vié equation is

dx = Axdt—-;-kgl(B,%x)dwk(t)+k§lkadwk(t) (5.5)
The equivalent Fisk-Stratono:/ié equation to th; DMZ filter equation (4.3) is

dp = £pdi + élh,«pdy,‘(t) (5.6)
where now £ is the operajt;r given by

£60) = T2 (00791~ S0~ TIFe )

Though I have not given a discussion of the Ito-Stratonovié equivalence for partial stochastic
differential equations this is easily understood by analogy from (5.5) if nothing else. Note that in (4.3)
the unknown is p and that the ;(x) are (commuting) diagonal linear operators p - ;(x)p.

As is turns out the stochastic aspects of the filtering problem in this approach largely disappear.
This happens because there is an equivalent version of the Fisk-Stratonovi¢ type DMZ equation (5.6)
which is robust and can be interpreted pathwise, i.e. as a family of deterministic partial differential
equations indexed by the possible observation paths, say, by the continuous functions R(=0) - R?; cf
below.

If from now on a stochastic differential equation appears then unless the contrary is explicitly
stated, it will always be a Fisk-Stratonovi¢ one.
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6. THE ROBUST VERSION OF THE DMZ EQUATION

Consider the (Fisk-Stratonovi¢) equation (5.6) for an unnormalized conditional density p(x,t). This
involves the dy;(r). Now, as also mentioned in section 3 above, what we have available in terms of
observations is one realization, one possible path, of a stochastic process y(r). Hence, apart from
smoothing effects introduced by the measurements process an almost surely nowhere differentiable
function, which makes it more difficult to handle the integrals involved and to find numerical approxi-
mations.

Consider the time-dependent (gauge) transformation

pr) = e THEP O ThEN O g ) 6.1)

As we are dealing with a Fisk-Stratonovi¢ equation the ordinary rules of calculus apply and equation
(5.6) transforms into an equation
% - 5- Sy S ey 08 (62)
i=] ij=
where the differential operators £; and £ are given by
1
£ = [h£]=hE—£h; , £ =51hi, (R, £]). (6.3)

Cf. below for a derivation of (6.2). The terms dy;() cancel after this transformation and we are left
with a family of partial differential equation indexed by the possible observations paths, i.e. with one
equation.from this family in a given filtering situation.

If p(x,t) (for a particular path y(t)) has been found from (6.2), then p(x,?) is given, as a function of
x and 1, by formula 6.1. Note in particular that the 4;(x) in (6.2) should not be read as functions of
the stochastic process x(7); instead (6.1) is simply the exponential of the known multiplication opera-
tor pi> (28~ hy(x)y;(1))p on densities.

To obtain (6.2) observe that substituting (6.1) into the DMZ equation (5.6) gives

%5;_ = ¢~ 2hEn0 g, Shm 5 ] (6.4)

Thus writing 4 for the operators of multiplication with 2hi(x)y;(2), we have to calculate e = £e.

By the adjoint action formula (cf the short tutorial on Lie algebras in this volume, [28]) this is equal
to

e—A£eA - £'—[A,£]+ A> [;1"£]] — [A,[A,[A,ﬂ]] +..

3!

In our case £ is a second order differential operator and 4 is multiplication with a function. Hence
[4,£] is a first order differential operator, [4, [4, £]] is a zero-th order differential operator, i.e. (multi-
cation with) a function, and [4,...,[4, £]..]=0 if three or more A’s occur. Writing out [4,£] and
[4, [4, £]] yields (6.2)-(6.3). :

Even though now we can work with nonstochastic partial differential equations (6.2) the numerics
of the situation are daunting, cf however, also [57]. Typically x is a large dimensional vector of, say,
dimension 27, in certain practical problems involving helicopters. So we have a second order semi-
elliptic PDE in 27 space dimensions and one time dimension. This rules out standard approximation
schemes. Also of course we need a solution method which deals in principle not with one instance of
equation (6.2) but with the whole family (6.2). Le. the parameters Y1(2),....p(t) must enter into the
calculation algorithm in a reasonable way. These remarks constitufe some of the motivation for the
approach via Wei-Norman equations discussed in the sections below.

(6.5)
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7. WEI-NORMAN THEORY [64]
It is important to note that the filtering equation (6.2) (or (5.6)) is of the general form

x = (A;x)u‘+...+(Akx)uk (71)

where the A; are linear operators and the «; known functions of time. Of course in (6.2) the role of x
is played by p, an infinite dimensional object. Here, for the moment, lets consider (7.1) as a finite
dimensional object. Let us also assume that the A4 ,...,4;, who are now, say, nXn matrices, form the
basis of a Lie algebra. (By adding a few more terms with corresponding w; equal to zero this can of
course always be assured.) Let us look for solutions of the form (an Ansalz)

x(t) = e84z o84 Q) (712)
where the g;(¢) are still to be determined functions of ¢. Differentiating (7.2) gives
X = g4, €8 8 o8N x(0)+ B gy A 08 B M x (0)+... (7.3)

and inserting
e ~8& 4, l'“e_glAl eglfh meK. a4,

just after g;4; in the i-the term, equation (7.3) can be rewritten
k / ) )
= Dgd+ 2 j‘:‘ Jg, “ad ...adi (A;)x (7.4)
i=1 fi i

i +4.. +j,«1>0
k
28";‘(141‘ +hi(grsg)A4;))

with £;(0,...,0)=0, where, agam the adjomt action formula (6.5) has been used. Here ad,(B)=[4,B],
ad', (B) ad(ad ’I(B)) Thus it remains to solve (equating the coefficients of the basis elements A in
(7.4) and (7.1))

gl+glh1l(glw-vgk)+g2h2l(gls'-'vgk)+---+gkhk1(gla---agk) = Uy
g2181ha(g1 gk T82hn(g 1o gk) o T 8khra((g1508k) = 12 (1.5)

gt hi(gronge) T Eahor(grong) T + Gl (g 150 8k) = Ua
which can be done for small  and g;(0)=... =g, =(0)=0 because 4;(0,...,0)=0. These equations are
called the Wei-Norman equations of (7.1). In general a representation (7.2) for the solution is only
possible for small . However things change if the Lie-algebra in question is solvable [64], then there is
such a representation for all 7. More precisely there is a suitable basis such that there is such a
representation for all . How this comes about is easy to see in the case that the Lie algebra L is nil-
potent:

LOLY = [LL1DLP=[L,LD]D..DL™ =[L,LM"~D]=0 7.6

# # %
Indeed let A ,...dx,, Ak, +100s AgprrAi,  t 1Ay, = Ay, ki <ky<..<k, be a basis such that
Ay, 15, Ax, is a basis for LU, i =0,...,m —1(kg =1,k =k). Then it immediately follows from (7.4)
that ;=0 for j<i and the set of equations (7.5) gets a nice triangular structure. Moreover

hij(g1,---,8k) involves only BlremrBi= (this is always the case, cf (7.4), so the hy; in (7.5) are always all
zero) and the resulting equations (7.5) for the nilpotent case are therefore of the form

gl = up, ,qkl = ukl
gk,+1 = ule+aklH(u,,...,ukl;gl,...,gkl),...,gkz = ukz+ak1(u|,...,uk|;gl,...,gkl) (77)

Bkt = U1 T Qg 1 (UL U 8 1 sk oo 8y = Uy T 0 (U U, 38 150 8k)
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where the o; are known (universal) functions of the u's and g’s. The initial conditions are g;(0)=0,
i=1,..k ‘

It is quite important (for applications of Wei Norman theory) to note that the equations (7.5), i.e.
the functions A;; are universal and depend only on the abstract structure of the Lie algebra and the
chosen basis. This means the following. That the matrices 4,,...,4, form the basis of a Lie algebra L

of n X n matrices means that

for certain real numbers vy}, the structure constants of L with respect to this basis. Now let L’ be a
second Lie algebra, say of m Xm matrices. Suppose that L and L’ are isomorphic under ¢:L — L’
and let B; =¢(4;). Then the B),..., B, are a basis for L’ and because ¢ is an isomorphism

[B:,B;] = XvjBr (7.9)

with precisely the same ;. As a result the Wei-Norman equations for the bilinear system of equations
y =By t..+Byuw , yeR™ (7.10)

are exactly the same.

This idea also extends to the case that we have a set £,,...,£; of operators on some function space
which form the basis of a Lie algebra L (so that for all i,j [£,£,]=Z2y];£, for certain v;)- Then again
the Wei-Norman equations are identical to the ones of any finite dimensional copy L’ of L (and by
Ado’s theorem, cf the short tutorial in Lie algebras in this volume, such a finite dimensional copy
always exists). Of course in such a case of operators we still need to be able to calculate the e8> for
the individual operators L;. Thus Wei-Norman theory can be seen as a method to integrate (solve) an
equation of the form (7.1) in terms of the more elementary equations

X = Aix (7.11)
Let me illustrate all this by means of an explicit example. Consider the four differential operators
in one variable
_ 14 d
£= 7;2——7% . 1 (7.12)
We then have

- _1.d* 1 1.d 15 _1d do. 1 d?
[£7x]¢_ £(X¢)"X£¢ ) Ex_z—(x¢)_ 2x3¢"' 2XZE'¢+_2"X3¢ = 'Z"'E;(d)'f‘x—d%)*?xﬁ

=Lldp 1dp 1| d 1 d' _do _ d
2 dx+2 dx+2xdx2 X T dx(¢)'
Thus
d
[Ex] = — . (1.13)
and similarly one finds
R . =1 11=1-4 11—
[£’ dx] =% [_‘Tx—’xl"l, [£9 1]_[x1 l]*[-d;al]_o (714)

g‘hus the four operators (7.12) span a four dimensional Lie algebra. It is called the oscillator Lie alge-
ra.
A finite dimensional copy in terms of 4X4 matrices of this algebra is given by the assignment

0100 0010 0 000 00 0 0
1o 0000 3 |0010 00 0 0
0000 1000030 000/!lo0 0 o
0000 0100 ~1000 00 -20
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(Exercise: check this; NB this does not contradict the Stone-von Neumann theorem that it is impossi-
ble to represent the communication relation [E,x]=1 in terms of finite dimensional operators in

such a way that | is represented by the unit operator.)

Now, by way of example, let us explicitly calculate the Wei-Norman equations for the Lie algebra
(7.12).
So the equation we want to solve is

o, = £pu; +xpu2+—%-pu3 +puy,  p(x, 0)=m(x) (7.15)

The ‘Ansatz’ is a solution of the form

d
g:()—— :
p = egz(!)f-egz(t)xe dx egl(l)ﬂ,(x) (716)

Differentiating (7.16) gives
d 4
_‘_17 - £gleg|£egzxeg, dx eg4”(x)
d_
+ eg:f:gzxegueg.‘ dx eg"/r(x)

d
X d Lt e
+ eg“"eg"‘gyd?e a o8 a(x)

d
5.
+ eBEe8 X dx o8y

£g1p+eg‘£g2xe -g,£p+eg.£engtg3 Td‘i—e 8%, —g.f.p

d d
£ 8 . 4] - -
+ o8 fe8T g g Tk T8, £,

Now g, commutes with the operators £, x, 33; (cf (7.14))). So the last term above simply gives g4p.

To calculate the two middle terms we use the adjoint action formula again
3
eBfxe 8 = x +gi[£x]+ %21!—[£,[£,x]] + % [E[E[£,xT]+...
3
d_ & x+ 8L d +...

LR IR TR TR

cosh(g,)x +sinh(g )

d - d d,, 8 d
B2x G T8x — & 22 L
e e i +g2[x,dx]+ o [x,[x, » 11+...

= %-—g2+0+0+0+...
eg.fegzx%e-gzxeg.f - eg":('zé-—gz)e"g"t‘ =

gl d

d d 1
gt R 11 ey (LR R
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3
d gi d &
__g2+g1x+—-——-+——3! x+..

Il

2! dx

d
-2 +sinh(g1)xcosh(g;)7d—x-
Thus we find
. . d . .
%f—z £1£, +g2cosh(g )xp+ gzsinh(g,)%p+g;smh(gn)xp+gscosh(gn)gp—gsgzﬁgw

Comparing this with the original equation (7.15) we find the folldwing ordinary differential equations
for the gy,....g4

gl = uy »gl(o)zo

cosh(g)g, +sinh(g,)g3=u, , g2(0)=0

7.17
sinh(g;)g, +cosh(ga)gs =u3 , g3(0)=0 1)
£4—g382=Us , £4(0)=0
or
g1=u; , 81(0)=0
o5 =cosh(g Ju; —sinh u3) , 22(0)=0
& (g1)uz —sinh(g;)u3) , g2(0) .18

&3 = —sinh(g))uy +cosh(g)u; , g3(0)=0
Ea=us+gag3 , £4(0)=0
which are of course trivial to solve. In order to find p(t,x) itself it now remains to calculate the
eg‘£,egzx,eg3i‘—

3o

ot

The last three of these are trivial and the first one is the harmonic oscillator. Some more remarks on
solving ‘harmonic oscillator type’ equations occur below in section 9.8.

The oscillators Lie algebra (7.12) is solvable, and not nilpotent. Hence the occurrence of the cou-

pled equations block consisting of the second and third equation of (7.17). This is typical for the case

of a solvable a Lie algebra. In the nilpotent case the equations can always be solved by quadratures
only. '

,e5; or, in other words to solve the simpler initial value problems

. do _ . 96 . 9 do _ .
= )£, —a%=gzxo, —‘:=g33;0, o =k

8. THE ESTIMATION LIE - ALGEBRA

In section 4, 5 and 7 above two things have become clear. Firstly that the DMZ equation (5.6) or
(6.2) is of bilinear type, i.e. of the general form

%‘;’. = (£10)u1 (1) + ... + (£ 0) (1)) @

where the £; are linear (differential) operators on some suitable space of unnormalized densities (func-
tions), and secondly that for bilinear type equations the Lie algebra generated by the operators
£),..,£, is important. If this Lie algebra is finite dimensional we have at least small time solutions
and if it is finite dimensional and solvable we have explicit methods to solve the initial value provided
one can do the same for the simpler equations

-%;& =vt)&p i=l..n (3.2)
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Incidentally the phrase ‘bilinear’ for equations of type (8.1) comes out of system and control theory.

Analysts would call this simply a system of linear equations. In control theory however, a linear
dynamical system is one of the form

%fti = Ap+Bu(r) (8.3)

where A is a linear operator on the space of p’s, the state space, and B is a linear operator from some
space of imputs to state space. The term bilinear is used to denote control systems of the form

%P- = Ap+ > Bipu(r) (8.4
14 =)
with 4 and B,,..,B,, operators on state space. In both cases the ui(f),....upy(t) are thought of as

inputs or controls.

Thus it is clear that the Lie-algebra generated by the operators occurring in the DMZ equations
(5.6) is important and has much to say about how difficult the filtering problem is. Indeed, as will be
explained, it can serve to formulate a necessary criterion (the BC principle) for the existence of a
recursive finite dimensional filter and this can be used to prove that for certain system nontrivial exact
finite dimensional recursive filters cannot exist. (E.g. for the cubic sensor, cf section 12 below).

By definition the estimation Lie algebra of a system (1.1) (1.2) is the Lie algebra spanned by the
operators occurring in the DMZ equation (5.6); ie. it is the Lie algebra generated by the second
order differential operator £ given by (5.7) and the multiplication operators hy,....h,. Notation:
ELie(Z) if = denotes the system (1.1)-(1.2).

If one works with the robust version of the DMZ equation the natural object to study is the Lie-
algebra:

E°Lie(Z) = Lie algebra generated by the operators £, [£,4], [(£A:).h].

This is in any case a subalgebra; it is often equal to ELie(S), and is in any case very similar to
ELie(Z) as will be shown now. Indeed E‘Lie(Z) is an ideal in ELie(E). To see this it suffices to
check that the generator of ELie(Z) when bracketed with the generators of E*Lie(Z) yield elements of
E’Lie(Z). For the generators £€ ELie(Z) this is trivial because £ is also in E*Lie(Z) and for the gen-
erators hy of ELie(2) we have that [h,£] and [A,[£h]] are in E°Lie(Z) by definition, and that
(A, [[£,7;),h,]]=0. This is the case because £ is second order and the A’s are functions; thus [£ A;] is
first order, [[£,4],h;] is a function and hence [Ax.[[£.4:].h;]]=0. Now consider the quotient of
ELie(S) by E* Lie(S)
0— E‘Lie(Z) - ELie(Z) - Q — 0

Q is generated by the images of the commuting operators f,...,h, so that Q is abelian (= commuta-
tive; i.e. [a,b]=0 for all 4,b, € Q) of dimension <p. It follows that in particular that ELie(Z) is finite
dimensional (resp. solvable) if and only if E*Lie(Z) is finite dimensional (resp. solvable). It also fol-

lows that doing Wei-Norman theory for ELie(Z) is practically the same as doing it for E¥Lie(=), the
only difference being a iumber of initial quadratures, cf section 13 below.

9. EXAMPLES OF ESTIMATION LIE ALGEBRAS
Let us look at some examples to see what kind of Lie algebras can arise as estimation Lie algebras.

9.1 EXAMPLE Wiener noise linearly observed. This is the simplest non-zero linear system
dx(t) = w(?), x,weR 99
dy(t) = x(t)dt +av(r), yveR 2
2
In this case £=-;—-j—2——l~x2, h=x. The Lie-algebra generated by this is the four-dimensional Lie
x

1. Cf. section 7 above for some of the calculations.

algebra with basis £, x, —gx—
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This also means that starting from an arbitrary initial density ¢(x) for x at time 0 we can solve the
corresponding DMZ equation

3

- = (75—2—-7x2)p+xpy'(t) ©.3)

by means of Wei-Norman theory. The explicit equation for g},g2.g3,84 occurring in the Ansatz
4

p(x,t) = 8108 g0 BV 5 Ve(x) (9.4)
are given by (7.18) above. They are

&1 =1, ga=cosh(t)p(t), g3=—sinh(t)p(r), ga=—gasinha(t)p(r) 9.5)
Not surprisingly the Kalman-Bucy filter for (9.2), given by

P=1-P? 04

m = P@y— (5.6
can be easily derived from (9.3). Indeed let us try for a solution of the form

_ x-m!z
p(x,t) = r(tye 9.7

i.e. an unnormalized Gaussian density, where m and P are yet to be determined functions of 7. One
finds

2
—a—2p<x,t) - (i"——"’L——m(x )

p(x 1y = (= "11’" L& P’") P+i)p(x,1)

Now substitute this in (9.3) and divide by p(x,r). There results an expression of the form
ax’+bx+c=0 with ab,c dependant on time alone. For this to hold we must have
a=0, b=0, ¢=0. This gives

1 1 P

a=0: —~2P2—27P—2-=0, ie. P=1-P?
. 2m ___ﬁ'l___ﬂ_P_ . . b1 p2 L .
b=0: P ——+y(t)= P pr e using P=1-P2, on finds Pm+Py

Finally ¢ =0 gives some (complicated) expression for 7. This shows that the solutions are in fact of
the form (9.7) provided the initial density is also an unnormalized Gaussian density. The precise
result for r(z) (and hence the precise expression for 7) is largely irrelevant because of formula (4.4) for
the conditional expectation E [¢(x)|y(s),0<<s <t]=¢(x (?)) of a function ¢(x) of the state.

9.8. Example. Linear systems.
Now let us consider general linear systems

dx = Axdt+Bdw xeR",.weR™

dy = Cxdt+dv  yeRP veR? ©9)
The system is said to be completely reachable if the nX(n +1)m matrix

R(A,B) = (B AB A*B..A"B)

Consisting the (n + 1) n Xm blocks A'B, i =0,...,n, has rank n. This means for the associated control
system x = Ax + Bu every element x(1)éR” can be reached from x (0)=0 by a suitable choice of input
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functions u(1)....,u(t), whence the terminology. Dually. the system (9.9) is completely observable if
the (n + 1)p X n matrix Q(4,C)

QA.C) = (CT (CA)YT ... (CA™T

consisting of the blocks CA', i=0.,...,n has rank n. This means that (with zero inputs) one can see
from y(¢) whether two initial states x(0) and x'(0) were different or not. Whence the name of the
concept.

Let us assume in (9.9) that (4,B) and (4,C) are completely reachable and completely observable
pairs of matrices. Then it is not difficult to show that the estimation Lie algebra L of (9.9) is the
2n+2 dimensional Lie algebra with basis

9 . 9 X aerer Xy, |
By B Y -
and £ equal to - .
-1 8 g, 3 _ —LiSveTe) xx
£ 2%(BB )Bx,-axj 'i.?j‘AUxJ i Tr(4) 2?j(C C)yxix; (9.10)
The (2n +1)-dimensional Heisenberg algebra b, with basis
NI X Xp, 1
ax1 yeeey aX,, 1 X 1 yeeesXps

is an ideal in L, i.e. [£,h,]CHh,, cf the tutorial in Lie algebras (28] in this volume. Hence L is solvable
and using Wei-Norman theory the DMZ equation can be integrated for arbitrary initial densities. Of
course this requires that we be able to integrate the simpler equation

L=tp . p0) = 0x) ©.11)

All the others, i.e. 9p/3t=x;0 and 9p/dr=0p/dx; are trivial, but £, cf (9.10), is itself a fairly compli-
cated operator. One natural thing to try would be to try to do Wei-Norman theory once more, w%ﬁch

leads tot the study of the Lie algebra generated by the various terms occurring in £, ie. the

ax,»axj ’
X -a—i— x;x; 1. The constant Tr(4) does not matter (as it commutes with everything). It turns out to
i

be slightly more convenient to consider instead the operators

& 1
L= Lans i)
axiaxj
XiX; yhj=lhoan i)
x,-—ga— i ij=1an G129
%
xi'é@x‘i"i";— R i=l,...,n

It is a straightforward exercise to check these form in fact the basis of a (2n2+n) dimensional Lie
algebra (of differential operators). As a matter of fact this Lie algebra is ismorphic to the Lie algebra
of all 2n X2n sympletic matrices. i.e. the Lie algebra sp,(R)

pa®R) = [ég] eR¥¥: 4B .C,DeR"*",B=BT,C=CT,4=-DT) (9.13)

This Lie algebra is simple and (thus) Wie-Norman theory only works for small time intervals. And

indeed there are operators M esp,(R) such that 71t_=Mx’ x€R™, or, equivalently %“;—=1t~lp, where
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M is the differential operators corresponding to the 2nX2n matrix M, has finite escape time
phenomena (for suitable initial conditions). However, 1t c_joes turn out that this 1sqmorphlsm of Lie
algebras can be used effectively to integrate equations like (9.11). T shall not discuss this aspect
further here, refering to [30] for all details. In the case of example 9.1. equation (9.11) is of course
that of the harmonic oscillator which is well studied.

Again, there is of course a link of the DMZ equation with the Kalman-Bucy filter, and the latter
can be deduced from the former [24]. As a matter of fact all Kalman-Bucy filters sort of fit together
to define one large representation of the Lie algebra Is, with basis

0 ] ¥ il
: R I IO LT 9.14)
15 X1 s Xl R P i, J ni<j (

.. L. 9 . ._
XX, Ij = Lni<j, X'F;j_l’j_ 1,..,n

1 3
of dimension 2n2+3n+1, into the Lie-algebra of all vectorfilds on RY,N=5n’+3n+1. Cf.
[24,29], for more details on this and the link with the so called oscillator or Segal-Shale-Weil represen-
tation of sp,(R). This is in fact the representation given by the operators (9.12) and it is precisely the
fact that we know how to integrate this representation together with the availability of the matrix
copy (9.13) of (9.12) which enables one to integrate equation like 9.11 [24].

9.15. Example. The cubic sensor
This is the system

dx = dw xweR

dy = x3dt+dv yveR
In a certain sense this is the simplest nonlinear system. (The quadratic sensor where the observation
equation is dy =x2df +dv instead is perhaps still simpler; on the other hand the noninjectivity of
xw~x? seems to be asking for additional trouble; as it turns out both are ‘equally hard’). This exam-
ple has a substantial literature devoted to it and has a reputation of being quite hard to handle [11].
A first indication of why this might be the case is the structure of its estimation Lie algebra.

Let W, =R <x,-2x—>, i.e. the associative algebra generated by the symbols x and = subject to

the relations suggested by the notation used, viz. [-a%,x]=(d%c)x -—x(gd;)= 1. Consider W, as a Lie

algebra under the commutator bracket [4,B]=AB —BA. In other words W, is the Lie algebra of all
differential operators in x (any order) with polynomial coefficients:

_ <o idj
W, = {%c,»jx o 1 ¢ jER) (9.16)

The 2estimation Lie algebra of (9.15) is the Lie-algebra generated by the two operators
-;—fx—z— ——%-xﬁ, x*. It turns out that this is everything. Le.
ELie(cubic sensor) = W, 9.17)

This a very la.rge infinite dimensional algebra and, as it turns out, cf below, a rather nasty one from
the point of view of exact finite-dimensional filtering. For a proof of (9.17), cf [25].
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9.18. Example. The quadratic sensor
dx = dw x,weR
dy = x%dt + dv y,veR
Let W’y be the subalgebra of W consisting of all differential operators of even total degree in x

d .
and e together:

= {Zc,/ d —eW, 1 ¢;=0 if i#j mod2) (9.19)

2 It turns out

that

ELie(quadratic sensor ) = W', (9.20)

9.12. Example. The weak cubic sensor
dx = aw X, €R

dy = (x+ex)dt+dv, y, veR

2
This time the generators of the estimation Lie algebra are ——%—(x +ex®), x+ex®. If e=0 we have

example (9.1) back. If e£0 we have again [23], [25].
ElLie (weak cubic sensor ) = W, , if e#0. (9.22)

9.23. Example.
dx, = dw,, dx,;=x}dt , X1.x2,WweR
dyy = xydt+dvy,dy;=xdt +dvy |, y;,vieR

Generalizing W), let W, be the Lie algebra of all differential operators (any order) in n variables with
polynomials coefficients, i.e.

3 ¥
= R<X |y Xp; = PP v —> = {anﬁx K tcqgERY
B
where a=(a,,...,a,) and B are multiindices, a;€NU {0} and where x* and g’ ; are short for x{'...x&r
X
b, b,
and ;8_ aa 5 respectively. The generators of the estimation Lie algebra are in this case
X X
l —ai—xz-——— Xy, X
2 9x3 TR
and we find (again) [25]

ELie(example 9.23) = W, (9.24)
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9.25. Example.
dx = x*dt+dw, xweR
dy = xdt+dv, y,veR

7.2

2 .
This time the generators are %ﬁ—-z-x ~x3-L and x and (again)

dx
ELie(example 9.25) =W, (9.26)

9.27. Example (mixed linear - bilinear type).

dxl = dw) xi,w ER
dx; = x +x1dt+x1dw2 Xx3,w3 ER
dy = xpdt+dv yveR

L 1,9 31, ‘
The generators are y-a—g-k 2x|-5%—~—x]—a—x—2—— 7x3 and x;, and (again) [25]

ELie(example 9.27) = W, (9.28)

Thus it would appear that the infinite dimensional Lie algebras W, have a habit of appearing very
often. This seems indeed to be the case. In fact I have conjectured

9.29. Conjecture. ]
Consider stochastic systems (1.1)(1.2) with polynomial /-G and h. Then for almost all f,G,h the esti-
mation Lie algebra of (1.1)«(1.2) will be equal to W,.

Here ‘almost all’ means an open dense set in the space of all triples (f,G,h) of vector and matrix
valued functions of the right dimensions topologized by means of the natural topology on their
sequences of coefficients. No proof of this conjecture appears to be in sight.

As we shall see the occurrence of W, as the estimation Lie algebra of a stochastic system is bad
news from the point of view of existence of exact recursive finite dimensional filters, So at least a few
examples (besides the linear ones) where something else turns up would be welcome. One large class
of such examples are the systems

dx = f(x)dt+G(x)dw, xeR"weR™
& = h(x)di+db, yEeRP,yeR? (9:30)

with the extra conditions that f,G and h are real analytic and that f(0)=0,G(0)=0, cf [25]. Another
example is

9.31. Example [25]

dx; = dw, x;,weR

dxy = x}di, x,eR

dy = x,dt +adv, y,veR
Here of course filtering for x), ie. calculating X, is straightforward by means of the Kalman filter.
Finding x, is a totally  different  matter.  (NB: by the Ito formula

d(3x1)=x}dx, +x,dr =x}dw +x,dt which does not have much to do with the equation for x,). The
generators in this case are
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and the Lie algebra generated by these two operators is the infinite dimensional Lie algebra with basis
8’ 3 ¥ ¥ .
£, —_—, T, =0,1.2,.‘. 9.32
i dxh " 9x; dxh " Axh ! ©32)
This is an infinite dimensional Lie algebra but still a solvable one in the appropriate sense, cf below.

9.33. Example. ‘Polynomials’ in n independent Brownian motions
The word ‘polynomial’ is here used in a very loose sense. What I mean are certain stochastic systems
directly inspired by polynomials. E.g the system corresponding to the ‘polynomial’ w” where w is a
one dimensional Wiener process is

dx| = dw, dx;=xdw, dxy=xqdw,..., dx,=x,_1dw

dy = x\di+dv . ©-34)

Here (9.34) are intended as Ito equations. Thus x, does rot really correspond to w”. Indeed a sys-
tem which has w" as a second state variable, x,, is

dx; = dw
dx; = nx] " law+n(n—1)x} " 2dr (9.35)
dy = x dt+av

This one, obtained by adding the state variable, x, =x7, which is a function of the state variables
already present, has an estimation Lie algebra which is isomorphic to the original system without the
extra state variable. This is a general fact. Cf. section 10 below. It is a curious and somewhat remark-
able fact that the estimation Lie algebra of (9.34) is also isomorphic to the oscillator Lie algebra. For
this it is really necessary to ‘unravel’ w” as in (9.34) by means of the intermediate states x,...,X, "
the system

dx, = dw

dx, = nx{ " 'dw
does not have its estimation Lie algebra isomorphic to the oscillator Lie algebra. Instead, for n=4, its
estimation Lie algebra is a much more complicated infinite dimensional affair. (For n =3 the estima-

tion Lie algebra is 5 dimensional with basis £, x, ~a;-—+3x% Fo 1, —ax—.)
1 2 2

More generally, consider systems ‘corresponding to a polynomial’
P = S w® (9.36)

where a=(ay,...,a,) is a multiindex and w*® is short for wi'..wi. These systems are defined as fol-
lows. Let p=(my,...,m,) be such that ¢, =0 unless @, <mj for k =1,..,n. Consider now the system
with state variables p; x;,, i =1,..,n; r=1,..,m; given by

dx1_|=dwl de.]:dWZ dxn‘l;dw"
dxyp=x;dw) dxyy=x3,dw, X, 2 = Xp, 1AW,
(9.37)
dxl.m, =X1m, - 1dw, de.m2 =X2,m,— 1wy dxn.m,, ='xn.m,,—ldwn

n
Ap =D calx1.0,-Xna, )Xig dW;
ai=]

with the observation equations
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dvy = xydt + dvy,.., dy, =X, dt +dv, (9.38)

Then the Estimation Lie algebra of (9.37)-(9.38) is generated by the 2% order operator £ and x....,x,.
It is finite dimensional with as basis

£ £ = [£x1 e En = [£ Xp)s X 1o i X 1. (9.39)

Besides the £ =[£, x,] the nonzero brackets are [£,£]=x and [&,x;]=1. Fora ‘(rather computational)
proof ¢f [31). There could well b, indeed should be, a conceptual prqof of this, but so far the argu-
ments 1 have in this direction are unconvincing. This is a solvable Lie algebra and so Wel-Norman
theory is applicable. Indeed the estimation Lie algebra is the same one as the one of n-independent
completely observed Wiener processes, sO the Wel-Normgn equations are the same as those in that
case. The individual operators £ and £ though are very dlﬂ"erg:nt and quite complicated, cf the partic-
ular example 9.41 below. So it remains to deal with the equations

B - B _g (9.40
5 £p and oy £ip )

It turns out that for both £ and £; the individual terms making up Fhese operators themselves generate
a solvable, albeit, as a rule, infinite dimensional Lie algebra. Hereisa particular example

9.41. Example. System associated to the Brownian polynomial wi +wiwy+ w3

Xm =dw1, de :dW2, dX2'2 :deW;g, dp =x1dw1 +x|dw2 ‘l‘deWl +X22dW2

dyl =X|dt+d1’], dyz =.X2dt+dV2

In this (still quite simple) case the operators are equal to

N L N BT L | ’ 2, 8%
= 2aq tagg Ty Tttty
2 0 b8, @ -
+ (x +x;)‘a';T R 1 Fxn)g 3 LTI Flrixa tx2x2) 3x220p
9, 9 0 L, 1,
g gty T 1

] d
£ = x]= E"'(xl‘*'xz)'@

£, =L x2]= 5%:+(X1+x22)%+{2§%2‘

Besides the cases where the W, occur as estimation Lie algebras we thus have several classes of sys-
tems which yield infinite dimensional but solvable Lie algebras, viz. real analytic systems (9.30) such
that f(0)=0, G(0)=0, and systems like example 9.31. A further class is furnished by the systems
which arise when a identification problem for linear systems is considered as a filtering problem (cf
section 15 below). This filtering problem is then nonlinear, reflecting the essential nonlinearity of
identification, but its estimation Lie algebra is again solvable but infinite dimensional. Finally in
tackling the equations (9.40) which form part of the filtering of Brownian polynomials again infinite
dimensional solvable Lie algebras arise.

This then is ample motivation for investigating whether something like infinite dimensional Wei-
Norman theory exists. This is a topic which we will take up below in section 13.
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9.42. Example. Benes systems [4].
dx = f(x)dt + dw
dy = xdt + dv
fo + 2 =ax®+bx+c
Le. we have Wiener noise with an extra nonlinear drift term given by f(x)dr; this drift term is

required to be such that —3—5+ f? is a quadratic polynomial in x. In this case also the estimation Lie
algebra is the oscillator Lie algebra.

9.43. Some open questions.

All in all very little is known about estimation Lie algebras. It seems very difficult to find other
(non-trivial and interesting) examples of finite dimensional estimation Lie algebras. Besides the linear
and Benes case and the (new) case of ‘Brownian polynomials’ (9.37) very few examples are known
(Wing Wong, Marcus, Lie, Ocone, . . .). In particular it is unknown whether finite dimensional simple
Lie algebras can ever arise as estimation Lie algebras.

10. INVARIANCE PROPERTIES OF THE ESTIMATION LIE ALGEBRA.

This section discusses some questions much related to the subjects discussed so far and what will still
come. But these questions are not essential for the remainder of this paper, and this section is some-
what more abstract than the remainder of this paper. It can be skipped if desired.

The estimation Lie algebra ELie(2) is clearly an invariant of a system 2: (1.1)(1.2) in the following
sense. If 2 and 3’ are two system of the type (1.1)-(1.2) on R” respectively, and ¢:R"—>R" is an iso-
morphism of £ and ' (a transformation of variables), then the estimation Lie algebras of 2 and &'
are isomorphic. Here, as we are dealing with Ito differential equations, isomorphism means that under
the change of variables x’=¢(x) the equation

dx = f(x)dt + G(x)dw (10.1)
transforms into the equation
dx’' = fi(x)dt + G'(x")dw (10.2)

under the Ito formula (transformation rule) which says that ¢(x)=x’ satisfies the differential equa-
tions
d 2 d
it = A0S = (S )+~ 322667, )t + 3G (x)aw (103)
~ 9x; 7 0x;0x; 7 0x;
where fi(x) is the i-th component of f(x) and Gj(x) is the i-th row of G(x). Substituting x = ¢~ !(x’)
in (10.3) must then yield the equations (10.2). On a general manifold M the transformation rule (10.3)
has no real meaning and then to talk about equivalent stochastic systems it is better to start with sys-
tems in Fisk-Stratonovi¢ form.
In addition the DMZ equation

2 = go+ Shtom, (104)
i=
can be gauge transformed, p = e¥#*)p to give an equation
B ~55+ Shoow (105)

i=1

with £ = e#0)ge ~4x) Correspondingly there is an isomorphism of the Lie algebra L generated by
£,h|,...,hp and the Lie algebra generated bij £ and hy,..,h,. This isomorphism is given by



122 M. Hazewinkel

AcL e 4679 in L. Sometimes non-isomorphic dynamical systems are gauge equivalent in this
sense. This happens e.g. for the BeneS systems 9.42 and corresponding 1-dimensional linear systems.
Cf. [2] for material on ‘mvariants’ in this context. o .

More generally (than the case of, isomorphims, i.e. changes of variables), if = — 2’ is a morphism
of stochastic dynamical systems then there is a corresponding homomorphism of their estimation Lxe
algebras. In particular consider a system (10.1) and let us add an additional state variable p which is a
function of the original state: p=¢(x1,...,x,). The resulting Ito differential equation for p is

1 .
dp = Jdwfedt+ 27 0nGCr,Grydl + gq)(k)Gk.ldWI (10.6)
k klj s

where
S 1
0 0 ’ ‘P(k,l) 0x 9x;
Let L be the estimation Lie algebra of (10.1) with observations dy; =h;(x)dr +dv; and let L be the
estimation Lie algebra of (10.1) complemented with the p-equation (10.6) above and the same obser-
vations. Then the isomorphism L — L is induced by i —EE—-I—%-)-{;, x; ~ x; and the inverse iso-
i i

morphism L —L is induced by x; b X;, -£C— - -éi—,% 0. (These are, as is easily checked, homomor-
: . R B I ) 4 @
phisms of associative algebras R<xy,...,X; Bxy " By op > — R<XperXn T
Now, if
1l @ a0 o lgp

£=3 ,% Ax;3x; GG Z o7 2 thj (109
then the corresponding operator for the system extended with (10.6) is

~ 1 aZ

£= £+ 2w G + 27 = Gid G (10.8)

Ik ki, 0%i9p
3 S 616 Gy~ S b
2o klj KOPRITL & dp KWk
U | q . .

Replacing o with ™ +¢(,<)$ in (10.7) yields the extra terms

1 9 0 1 i 1 9

7 N as GOk = 37 2000w CGi—75 i) ik Gjk =~ :

2%%) ip 3, KOk 21;1% o3 ) Gik Gie zi%q’(mGkGJk 3 (109)
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Now the first term of the RHS of (10.9) and (10.10) combine to give the third term of the RHS of
(10.8). The second term of the RHS of (10.9) is the fourth term of the RHS of (10.8); expression
(10.11) is equal to the second term of the RHS of 10.8 and finally (10.12) is the last term of the RHS

of 10.8. Thus al— .-»—ag-xi—+¢(,-)-é%, x;  x; does indeed. take £ into £.
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Inversely one can ask to what extent the estimation Lie algebra ELie(Z) determines the system =.
Certainly nonisomorphic systems can have isomorphic estimation Lie algebras; e.g. the Bene¥ systems
and one dimensional systems or the Brownian polynomial systems and the systems
dx\=dw,,...,dx,, =dw,, dyy=x\dttdvy,....dy,=dt +dv,. But of course ELie(Z) is not just an
abstract Lie algebra; it comes together with a natural (linear infinite dimensional) representation (on a
suitable space of unnormalized densities). The more sensible question is therefore whether the pair
(ELie(Z), corresponding representation) determines = up to isomorphism.

This is also not true as shown by the gauge equivalence of the Benes systems with the correspond-
ing linear ones. It would be nice to know more about just how much information is contained in the
pair (ELie(Z), representation). .

The question is akin to the following one for control systems of the form

X = feodt + S g, xeMueR (10.13)

i=1
¥y =h(x)yeRP

Associated to (10.13) we have the Lie algebra generated by f and the g; denote this one by Lie(Z). It
also comes together with a natural representation. Indeed f and the g; are vectorfields and hence are
first order differential operators acting on functions on M, in particular the functions 4;,...,4,. Let
V(Z) be the smallest subspace of H M) containing 4,...,h, and stable under Dy, D, Then V(E) car-
ries a linear representation of Lie(E) and the question is to what extent the pair (Lie(Z), V(Z)) charac-
terizes £ up to isomorphism. A first problem here is to recover the manifold M from (Lie(Z),V(Z)).
This is strongly related to the following question which has been studied in [59]. Given an n-
dimensional manifold M let V(M) be the Lie algebra of all vectorfields on M. Can one recover M
from V(M)?

The reason I bring up these questions is the following. As we shall see in section 12 existence of an
exact finite dimensional recursive filter implies the extence of a homomorphism of Lie algebras
ELie(Z)— V(M) where V(M) is the Lie algebra of vectorfields on the manifold on which the filter for
¢(x) exists (this filter is assumed to be of minimal dimension among all filters for ¢(x).)

The questions briefly raised above relate to the inverse problem: given a homomorphism
ELie(2)—V (M) for some M, plus suitable supplementary structure, does there exist a corresponding
filter. Without additional hypotheses this is certainly not true cf e.g the contributions by
Krishnaprasad-Marcus and Hazewinkel-Marcus in [34].

11. THE BC PRINCIPLE
We have already seen one set of reasons why ELie(Z) is important for filtering questions: If it is finite
dimensional and solvable we can apply Wei-Norman theory; if it is at least finite dimensional we have
in any case Wei-Norman theory for small time. If it is infinite dimensional but still solvable there are
potential approximation schemes, cf below. Let me now describe a second reason why the estimation
Lie algebra ELie(Z) of a system Z is important for filtering problems. I like to call it the BC principle,
not because it is very old, though it could have been maybe, nor is it named after Johny Hart’s car-
toon character; the BC stand for Brockett and Clark who first enunciated it, [9]. o

Suppose we have a filter (2.3)-(2.4) on a finite dimensional manifold M for a statistic ¢(x,). We may
as well assume that it is minimal, i.e. has minimal dim(M). The a and §,,..., B, in (2.3) are vectorfields
on M. Let V(M) denote the Lie algebra of smooth vectorfields on M. Then the BC principle states
the following:
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11.1. BC Principle. -
If (2.3)24) is a minimal filter for a statistic ¢(x,) of a system 2 then £ fBy,....1, —» B, defines an
antihomomorphism of Lie algebras from ELie(Z) into V(M).

Here “anti” means the following: if ¢:L, — Ly is a map of vectorspaces from the Lie-algebra L to
the Lie-algebra Ly, it is called an antihomomorphism of Lie-algebras if ¢([4,B])= —[d(4),(B)] for
all A,BeL,. .

11.2. Example.
Consider again the simplest nonzero linear system (9.2). It is linear so there is the Kalman-Bucy filter
for the conditional state x. This filter is (cf (9.6) and (2.2))

dP = (1—P%)dt, dm = P(dy —m dt).
So the two vectorfields a and 8 of the filter are respectively

—_pnd _p, d p_p 3
a=(1=Pgp = Pmg B= Py

where we have used the ‘5%- notation’; cf the tutorial on differentiable manifolds [27] in this volume.

A simple calculation shows [a,8]= 5%, and it is now indeed a simple exercise to show that

)

%%2— - '%‘le-aa, xw B, induces an antimorphism of Lie-algebras. (It also induces a homomor-
phism, but that is an accident which happens for linear systems if the drift term Ax is absent).

A feeling of why the BC principle should be true can be generated as follows. Think for the
moment of two automata with given initial state and with outputs (Moore automata), which, when fed
the same string of input data, produce exactly the same string of output data. Suppose the second
automaton is minimal. Then it is well known (and easy to prove by constructing the minimal automa-
ton from the input-output data) that there is a homomorphism of the subautomaton of the first con-
sisting of the states reachable from the initial state to the second automaton; this homomorphism so
to speak makes visible that the two machines do the same job. A similar theorem holds for initialized
finite dimensional systems [63], in particular for systems of the form

k=) + SR0M, ¥ =1()

Here the picture produced by the theorem is the following commutative diagram

s
B'],...’Brp M ,
Y
i} \
¢
\ o R’
B B MM

(The Itheo.rem assert the e_xistence of a differentiable map ¢ defined on the reachable from x’y subset
of M’ which makes the diagram commutative. This in particular implies that d¢ takes the vectorfields

a’,p' 1resB'm 10tO 'a,,Bl,...,B,,, respectively, and, ¢ being a differentiable map, d¢ induces a homomor-
phism from the Lie algebra generated by o,8',...,8' to V(M), cf [27].

In the case of the BC principle we also have two “machines” which do the same job: one is the
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postulated minimal filter, the other is the infinite dimensional machine given by the DMZ-equation
(5.7) and the output map (4.4). So we are in a similar situation as above but with M’ infinite dimen-
sional. A proof in this case follows from considerations in [39].

The fact that in the case of the BC-principle we get an antihomomorphism instead of a homomor-
phism arises from the following. Given a linear space ¥ and an operator 4 on it we can define a
(linear) vectorfield on ¥ by assigning to veV the tangent vector Av. (So we are considering the equa-
tion v =Ay.) This defines an anti-isomorphism of the Lie algebra of operators on ¥ to the Lie algebra
of linear vectorfields on V.

What about a converse to the BC principle? Le. suppose that we have given an antihomorphism of
Lie-algebras ELie(Z)—V (M) into the vectorfields of some finite dimensional manifold. Does there
correspond a filter for some statistic of =. Just having the homomorphism is clearly insufficient. There
are also explicit counterexamples [34]. This is understandable, for in any case we completely ignored
the output aspect when making the BC-principle plausible. This is not trivial contrary to what the
diagram above may suggest. It is not true that given ¢ and any y one can take y'=yo¢. The problem
is that y” as a function on M’ = space of unnormalized densities is of a very specific type, cf (4.4).

Even apart from that things are not guaranteed. What we need of course is a ¢ making the left half
of the diagram above commutative. Then, if m’e M’ is going to the mapped on m €M, obviously the
isotropy subalgebra of ELie(Z) at m’ will go into the isotropy subalgebra of ¥ (M) at m. The iso-
tropy subalgebra ¥ (M), of V(M) at xeM consists of all vectorfields which are zero at x. The iso-
tropy subalgebra of ELie(Z) at xeM is ELie(S)NV (M )x)- For the case of finite dynamical systems
there are positive results, [41], stating that in such a case this extra condition is also sufficient to
guarantee the existence of ¢ locally.

The whole clearly relates to seeing to what extend a manifold can be recovered from its Lie algebra
of vectorfields (via its maximal subalgebras of finite codimension) and whether differentiable maps
can be recovered from the map between Lie-algebras they induce. This question has been examined
in [59].

A more representation theoretic way of looking at things, already touched upon in section 10
above, is as follows. Both ELie(Z) and V(M) come with a natural representation on the space of
functionals on M’ and the space of functions on M respectively. If there were a ¢ as in the diagram
above ¢ would also induce a map between these representation spaces compatible with the homomor-
phism of Lie algebras. That therefore is clearly a necessary condition. This way of looking at things
contains the isotropy subalgebra condition and also contains output function aspects. Thus the total
picture regarding a converse to the BC-principle is not unpromising but nothing is established.

12. THE CUBIC SENSOR

We have seen that the Weyl-Heisenberg algebra W, =R<x,..,x,; 0/0xi,..,0/0x,> of all
differential operators with polynomial coefficients often occurs in filtering problems, i.e. as an Estima-
tion Lie algebra. Given the BC-principle it is therefore of interest to know something about its rela-
tions with another class of infinite dimensional Lie algebras, viz the Lie algebras V(M) of smooth
vectorfields on a finite dimensional manifold. The algebra W, has a one-dimensional centre R. 1 con-
sisting of the scalar multiples of the identity operator. Apart from that it is simple; i.e. the quotient
algebra W, /R. 1 is simple.

12.1. Theorem ([25]).
Let a:W,—V (M) or W,/R.1-V (M) be a homomorphism or antihomomorphism of Lie algebras, where
M is a finite dimensional manifold. Then a=0.

The original 12 page proof of this result, [25], was long and computational. Another much shorter
proof has more recently been given by Toby Stafford. Perhaps inevitably this more conceptual proof
is based on the Stone- von Neuman result on the impossibility of representing the 3-dimensional

Heisenberg Lie algebra b; with basis x x]=1 by means of finite dimensional matrices in

d
’dx’l,[dx’
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such a way that 1 is represented by the unit matrix. _
Now consider again the cubic sensor, i.e. the one-dimensional system

dx =dw, dy =x’dt =dv (12.2)

consisting of Wiener noise, cubically observed with further independent noise corrupting the observa-
tions. As noted before (example 9.14)

ELie(cubic sensor) = W). (12.3)

Now suppose that we have a finite dimensional filter for some condi'tiona,l statisti_c &(x,) th the cubic
sensor. By the BC-principle 11.1 if follows that there is an antihomomorphism of Lie-algebras
W, = ELie (cubic sensor) —V(M). By theorem 12.1 it follows that «=0 and from this it is not hard
to see that the only statistics of the cubic sensor for which there exists a finite dimensional exact
recursive filter are the constants. ,

A direct proof of this, which sort of proves the BC-principle in this particular case along the way, is
contained in [26]. .

A similar staternent holds for all other systems whose estimation Lie algebras are isomorphic to a
W, or W,/R, and in fact also for the quadratic sensor whose estimation Lie algebra is ‘the even
subalgebra’ W’; of W,. As we have seen W, occurs often as an estimation algebra so often exact
finite dimensional recursive filters will not exist. This makes approximate recursive filters doubly
important, a point to which we will return several times below.

13. INFINITE DIMENSIONAL WEI-NORMAN THEORY

We have already seen a number of cases where estimation Lie algebras were infinite dimensional and
were claimed to be solvable in a suitable infinite dimensional sense. The precise definition of this is as
follows.

13.1. Definition
Let L be a (finite or infinite dimensional) Lie algebra (over a field k; take R for convience). Then L is
solvable if there exists a sequence of ideals I,15,....1,. . . such that N1, =0 and such that each quotient

algebra L/1, is finite dimensional and solvable (as a finite dimensional Lie algebra).

This is a good concept in the context of Wei-Norman theory because as we shall see in a few
moments the Wei-Norman equations are well behaved with respect to quotients (and not at all well
with respect to subalgebras).

13.2. Example

Consider again the estimation Lie algebra L of example 9.31. Recall that it had a basis consisting of
the operators :

192 d 1 R SR I A
f=7——— R —_— T, T
2 ax% X1 aXZ 2 X1, X1 ax‘z 8x'2 P a.X1 aX'z =012,
Let b; be the subspace spanned by the operators

¥y ¥ 9 ¥V .
i axd’ ox{’ Oxy dxi’ =

It is easy to check that the b are ideals, and not difficult to show that the quotients L/Y; are finite
dimensional and solvable.
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13.3. Wei-Norman theory revisited
Now let us consider Wei-Norman theory again in the setting of a Lie-algebra L and an ideal a in it.
Let dimL =n, dim a =»n —k, 0<k<n. Choose a basis 4,...,Ax,Ag +1,..-.4, for L in such a way that
Ak +1,...,4y are all in a (i.e. they form a basis for the subspace a).

Recall from section 7, cf formulas (7.4) and 7.5), that the Wei-Norman equations are of the form

gr +glhlr(g) ++gnhnr(g) = U (134)
where g is short for (g,...,g,) and where the h , are such that
S function of(gy,....g-1) ady'..ady " (4)) = Shi(g)d, (13.5)
Kok :

-

It follows first of all from (13.5) that

hj.(g) only depends on  gy,....g - (13.6)
Second, let j>£, so that 4;ea. Then ad',;'l...aal,’f(l‘;'l (4;)€A and it follows that

if j>k, h;(g) =0 for r<k (13.7)
Now take r<k in (13.6). Taking account of (13.6) and (13.7) we see that (13.4) is of the form

& F 21 h 11 )Tt B (g1 —1) = Uy (13.4)

Thus in the situation under consideration of an ideal a in L and a basis adapted to this situation the
Wei-Norman equations for gi,...,g only involve the g,...,8, and can thus be written down, analysed
and solved without any regard for the remainder of the Lie algebra.

As is now readily seen from what has been said, the Wei-Norman equations for gy,...,g, are in fact
the Wei-Norman equations belonging to the quotient algebra L/a with respect to the basis
Ay +a, Ay +a,..,A; + a of this quotient.

We are now ready to consider the infinite dimensional case. So suppose that L has ideals
1,,I,,....,1,,... such that NJ,=0 and each L/I, is dimensional and solvable. There is than a basis of L
of the form

A A Ag 110 Ay,, <k <l (13.5)
such that

A 41y Aiy+20 (13.6)
is a basis for 1,. We are, as usual, interested in solving an equation

L - Saou) (137)

where, in our case at least, the sum on the right is a finite one and where we can assume that the 4;
are part of the basis 13.5 (otherwise write out the operators in (13.7) in terms of that basis.) We can
in effect assume that, say, the sum runs from i =1 to i =k,. This does not mean, however, that the
solution can be written in terms of the eg'(M', 1<j<k,; the higher 4's will also tend to occur via
higher brackets.

The idea now is to try an infinite product

8 g8t g8 a8ty () (13.8)

as Ansatz. By the remarks made about quotients above, the infinite system of Wei-Norman for the g
is such that

Elonfk, Omly involve gi,...gk ; Ui,y



128 M. Hazewinkel

Z1-sBk, ODly INVOIVE g1yensBh, * Uisesslik,

So that in any case the infinite system of Wei-Norman equations makes sense. We can now calculate
a sequence of densities

eg‘A‘.‘.eg“A*"n(x)

Y 4
e84 Bt Bt a(x)

The question remains whether this sequence of densities converges in one sense or another. This is
largely uninvestigated mather. Scattered through the remainder of this article there are a number of
comments on this. :

There is more to be said about Wei-Norman type theory in infinite dimensional contexts. A numbe:
of estimation Lie algebras occur as solvable subalgebras of a Lie algebra of the form R[zy,...,z,|®1
where L is a finite dimensional Lie algebra of differential operators in X1,...,x,. The meaning of thi;
symbolism is as follows. Let Aj,...,4, be a basis of L. Then a basis for R[z1,...,z,]® L is formed b
the differential operators

. 2%4;, a=(ay,,a), g; eNU{0} a multi index, i =1,...,s
And the bracket between these basis elements is given by
[ZaAi’ ZﬂAj] =za+B [AI,AJ]

These are called current algebras and have been investigated in both the mathematics and the physic
literature to a considerable extent [36-38,40,58]. The point here is that though R[z]®L is infinit
dimensional over R it is finite dimensional over the ring of functions R[z]. Thus the natural object i
which solutions of equations

-ae- = . g,
= Suale

will live in something like the group of functions in zy,...,z, to G, where G is the Lie group of L1
slightly more concrete terms this means that the Ansatz now becomes

p(t,x) = e85 m(x,2)

where now the g; are supposed to be functions of both 7 and zy,...,z,, polynomial in z in this partic
lar context.

The estimation Lie algebra of a linear system identification problem is of the ‘subalgebra of currer
algebra’ type, cf below in section 15. In [42] there are some more details on Wei-Norman theory ar
identification from this particular point of view.

14. THE WEAK CUBIC SENSOR

Recall that this is the one dimensional system
dx = aw (14.
dy = (x+ex®)dt +dv

with e5£0. Recall also that its estimation Lie algebra is equal to W for e~0 (and for ¢=0 it reduc
of course to the oscillator Lie algebra). Thus by the arguments of section 12 above it follows th
there are no exact finite dimensional recursive filters for any statistic of the weak cubic sensor. C
the other hand it is intuitively hard to believe that the filter for =0 will not give something of :
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approximation. Also when one actually calculates ELie(weak cubic sensor) one notices that the
higher order differential operators and higher order polynomials and products of these appear with
high powers of ¢ in front of them, suggesting that neglecting these will (/) not matter too much, and
(it) give us something finite dimensional to work with. This can be made precise as follows. Consider
¢ in (14.1) as a parameter. Calculate ELie (weak cubic sensor) in the usual way but with € as a poly-

nomial variable, i.e. calculate ELie as a subalgebra of R <c.x,—‘—g(—>, [5,2;]——-0, Le. treat € as a second

variable (besides x). Now introduce the extra rule €*=0 for m=n. Then the resulting algebra is
finite dimensional and solvable. Let us call this the estimation Lie algebra modulo €', ELie mod(€").
Technically speaking we are considering ELie®giqRle]/¢". That ELie mod(¢") is finite dimensional
and solvable in this case is an instance of a much more general phenomenon.

14.2. Theorem ([23,29]). .
Let 2, be a stochastic system of the form
dx = (Ax+eP4(x)dt +(B+ePg(x)dw xeR", weR™
dy = (Cx+ePc(x)dt +dv geR?, veRP
}vheril P4(x),Pg(x),Pc(x) are polynomial in x. Then ELie(Z,) mod(€) is finite dimensional and solvable
or all r.

14.3. Example.
ELie (weak cubic sensor) mod(e?) is 14 dimensional with basis

1d® 1, 4 4a 1. d
2 15 ex,x,ex,dx,l,e,exdx,cx
d & 4 & &L o

dx’ dx?’ dx’ dx3’  dx?’

The next question is: do these finite dimensional solvable “quotients” of ELie(Z,) calculate anything.
Let us do the following. The solution of the DMZ equation will also depend on e. Let us look for
formal power series in ¢ solutions of the form

p(x,1,€) = po(x,1)+ep;(x,0)+py(x,0)+... (14.4)

Then the Wei-Norman equations for ELie(Z;) mod(€") precisely compute the first r coefficients of
(14.9), i.e. py(x,1),...,0, —1(x,t). This is quite simple and is in fact related of the second group of ideas
re infinite dimensional Wei-Norman theory as discussed in section 13 above. (It also has aspects of
the first group of ideas and is in fact a sort of amalgam of both).

The next question is whether the formal series (14.4) will converge. This is again a matter which
still needs a great amount of investigation. The series does converge for the weak cubic sensor and
the weak quadratic one. It is also pleasing to note that the resulting mod(e?) filter for the weak qua-
dratic sensor sensor already performs much better than the extended Kalman filter [35,48]. Further it
can be shown that the series (14.4) is always an asymptotic series in the technical sense of the word.
On the other hand there are arguments indicating that the series will not converge for the weak quar-
tic sensor and higher. Thus there appears much to do and it may well be fruitful to take into account
that p(x,z,¢) only matters up to a normalization factor r(,¢), which can be chosen as one pleases.

15. IDENTIFICATION OF LINEAR DYNAMICAL SYSTEMS

Suppose now that we are faced with a somewhat different problem. Namely suppose one has reason
to believe, or simply does not know anything better to do, that a given phenomenon, say a time
series, is modeled by a linear dynamical system

dx = Axdt+Bdw, dy = Cxdt+dv (15.1)
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Now, however, the coefficients in 4,B,C are unknown and also have to be estimated from the obser-
vations y(z). That is the system (15.1) has to be identified. It is easy to turn this into a filtering
problem by adding the (stochastic) equations

dd =0, d3=0,dC =0 (15.2)

(or just dr; =0 whether the ry; Tun through the coefficients which are unknown, if 4,B,C are partly
known; for example because of structural considerations). The resulting filtering problem is non-

linear.

15.3. Observation ) _ '
The estimation Lie algebra of the system (15.1)-(15.2) is a sub-Lie-algebra of the current Lie algebra

Is, ®R[A4,B,C] where R[4,BC] stands for the ring of polynomials in the indeterminates a;;,by,cys-
Here Is, is the (2n?+3n +1)-dimensional Lie algebra with basis (9.14); i.e. the Lie %lgebra of all

. 9 20 .
differential operators of total degree <2 in x; and R that Is, ={Zc,pX v Cap=0 if

lo|+|B|>2}. The Lie algebra Is, contains a subalgebra isomorphic to sp, (cf section 9 above), so this
does not yet prove that ELie((15.1)-(15.2)) is solvable. But as a matter of fact it is. Thus the ideas
and considerations of the previous two sections can be brought into play. Some initial results exploit-
ing the current algebra based ideas briefly discussed in the second half of section 13 above are con-
tained in [42]. In this rather special case it turns out that the higher approximations (the zero-th
approximation is simply the family of Kalman-Bucy filters parameterized by 4, B, C also discussed in
section 9 above) have to do with sensitivity equations: sensitivities of the output y(¢) with respect to
changes in the parameters 4,B,C.

As stated above, though, the problem is degenerate and likely to cause all kind of difficulties. The
problem is that the conditional density p(x,4,B,C,t) will be degenerate because the 4,B,C are not
uniquely determined by the observations. Indeed if S is an invertible n X» matrix then the system
(15.1) given by the matrices SAS~!,SB,CS™! instead of 4,B,C gives exactly the same input-output
behaviour. Thus we should really be considering this problem on a suitable quotient space
{(4,B,C)}/GL,. These quotient spaces as a rule are not diffeomorphic to open sets in some R”
[32,33]. This is one way m which stochastic systems like (1.1)-(1.2) on nontrivial manifolds naturally
arise and it leads to the necessity of finding a DMZ-equation in this more general context. Work in
this direction has been done by Ji Dunmu and T.E. Duncan.

Let me add one more possible approach, which is in the spirit of the ideas of section 14 and the
first half of section 13, rather than based on current algebra ideas. For the filters giving x,A4,B,C for

problem (15.1)-(15.2) one expects x to move fast relative A4,B,C. Thus it would make sense to con-
sider a system

dx = (A0+eA1)xdt+(B0+eB,)dw, dy =— (Co+eC)dt +av (15.4)
dA] :O,dB] =0,dC, =0

where 4, Bq,C, are assumed known) and apply the ideas of section 11 above to find optimal direc-
tions of change (i.e. the 4,,B,,C;)).

16. ASYMPTOTIC EXPANSIONS AND APPROXIMATE HOMOMORPHISMS. THE MARKING APPROACH.
The ideas to be outlined below in this section are still speculative but there are quite a number of
positive signs.
_ First however let me point out that the procedures based on Wei-Norman techniques as described
in sections 13 and 14 above clearly indicate that existence, uniqueness and regularity results for solu-
tions of the DMZ-equation have a lot to do with the existence of asymptotic expansions ([48]). for
regularity results etc. cf e.g. [3,12,43,52] and references in these papers.

Let us consider a control system of the form
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X :f(X)+ELl,'g,'(X) (16‘1)

where the f'and g, are vectorfields. To make thinking easier assume that 0 is a stable and asymptoti-
cally stable equilibrium for the unforced equation. A system like (16.1) is intended as a model of
something and as such one can argue that say the values of f(x).g(x) are relatively well known, the
values of their (partial) derivatives (w.r.t. the x;) will be less known, the second partial derivations are
still less well determined etc..

Thus, intuitively, for systems which represent or model real (stable) things one would expect that in
may cases the behaviour of (16.1) will depend primarily on the first few terms which appear in the Lie
algebra generated by fand the g;. The higher brackets should matter less and less.

That means that instead of looking at Lie{f.g.....g» }. the Lie algebra generated by f.,g,...gn, as a
Lie algebra without further structure we should look at it as a Lie algebra with a given set of genera-
tors and sort of keep track of how often these generators are used to generate further elements of the
algebra. For each time a bracket is taken a differentiation is applied, and thus the higher brackets of
the fgy,....g, depend only on the deeper parts of the Taylor expansions of f,gi,...,g». More pre-
cisely brackets of order n of a nearby changed system differ by terms of the form A(n;)"..A(n,)" with
fyny +...+i.n,=n wher A(n;) symbolizes an upper bound for the uncertainty, i.e., the changes, at level
ny in the Taylor expansions. Let me also stress that, in spite of the word ‘Taylor expansion’ in the
previous sentences I am attempting to formulate global ideas of approximation and definitely not
local ones around one point. If fis a function of one variable depicted as a graph in the plane, then
a piecewise linear approximation of f with rounded corners would be a low order illustration of what
is intended here. Spline approximation takes us up (at least) one order higher.

Personally 1 would also say that having noises rather than precise deterministic controls % would
enhance this type of (structural?) stability.

A precise way to keep track of how often the generators are used is to introduce one extra counting
indeterminate z and to consider instead of L=Lie{f,g,....g} the Lie algebra generated by the
vectorfields {zf,zgy,...,2g, }. This Lie algebra L, is topologically nilpotent, i.e. if L{"=[L,,L{" D],
LO=L,, then NL{™ ={0}. And a homomorphism L,— V(M) into the vectorfields on M with kernel
L precisely means “respecting the structure of the Lie algebra L up to brackets of order n”. All
this is very much related to the ideas of nilpotent approximation introduced in the study of hypoellip-
ticity [22,61], which are now also being investigated in control and system theoretic contexts [15,60].

Let me explain the context partly. Consider a homomorphism of a system of type (16.1) into an
other one. That means a differentiable map ¢:M—M’ where M and M’ are the state space manifolds
of (16.1) and (16.1)" such that ¢ takes the vectorfields f,g1,...,g. into the vectorfields f",g"1,....8"m. (If
there is also an output map h:M—RP, then of course we must also have h's¢p=Hh). Inversely if Lie(Z)
is the Lie algebra generated by f,g1.....g» and «a:Lie(Z)—Lie(2') is a homomorphism of Lie algebras
taking isotropy subalgebras into isotropy subalgebras, then, at least locally, there exists a ¢ such that
‘do=a’.

A first idea of an approximate homomorphism a of level m is that if ¢ resp. 7 are elements in
Lie(Z) which can be obtained by taking iterated brackets of the f,g1,...,g, at most a, resp. a, times
and a,+a,<m, then ofo,7]=[a(0),a(r)]. This corresponds precisely to introducing markers, i.e. writ-
ing zgy,...,2gn and saying that a map a:Lie,(2)—Lie(Z’) is an approximate homomorphism of level m
if it induces a homomorphism of Lie algebras Lie,(S)modz™*! — Lie,(£"y modz™ *!

Thus in filtering theory, which can be seen as the theory of trying to find (approximate) homomor-
phism of the infinite dimensional system given by the DMZ equation (5.6) or (6.2) and the output
map (4.4) to finite dimensional systems, it would seem natural to look at the Lie algebra of operators
ELie,(Z) generated by the operators

ZQ£, Zlh|,...,thp

where the 20,Z1,--,2, are additional variables (so as to give, if desired, certain observations more
weight than others and to be able to set certain of them, especially z, equal to 1). The idea would be
then to study the filters produced by Wei-Norman type techniques for the various finite dimensional
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quotients and to see whether this produces viable expansions.

Let me conclude this section with an argument indicating that the approximation scheme indicated
above should work. Let the true system be = and assume it is stable in the sense that modifying the
f.g1++gm in the manner indicated does not change the input-output behaviour much. Models of real
systems are expected to be like this simply because they must still do a reasonable job if some of the
measured coefficients are slightly wrong, which is inevitable. Now suppose moreover that 1 can
modify the higher derivatives of the £,g1,..,8 in such a way that there exists an exact finite dimen-
sional filter for the modified system ¥'. Thus the situation is as depicted below

W, }-, filter of ¢’(:’CI\)
———3p——]  lrue system 5 ) I
modified system
. ) filter of 30
Y, | modified system -)’; ) (x,)
modified system

Now the filter of the modified system is also expected to be (input-output) stable. Indeed it will
almost have to be that in order to do its job. Then the two composed systems shown above will be
close in input-output sense, which means precisely that we have constructed an approximate filter for
the true system.

Now, as far as I can see, for a given system Z, there will as a rule not exist an approximation (in
the given sense) which suddenly has a finite dimensional solvable estimation Lie algebra. Or even an
infinite dimensional solvable one. In that case there certainly are lots of filters but it is less clear what
quantities they filter for and it also remains to be investigated thoroughly whether they give usuable
approximation to a p(x,?), cf section 13, 14 above.

Thus it does not seem that the argument given above can be used to prove that the marking
approach gives good approximate filters, but the argument certainly provides positive indications.

17. REMOVING OUTLIERS

A final idea in much the same spirit as before is the following. Suppose we are again dealing with a
system

dx = f(x)dt+G(x)dw, dy = h(x)dt +ab. (17.1)

Suppose also, to make thinking easier, that the thing is more or less stable, so that x tends to remain
in some bounded partion of R" (f asymptotically stable), and maybe suppose also that A is proper, so
that large y observations are exceedingly rare and should probably be discounted. Suppose that
™™V is differential algebraically independent of f,G,h. This is for example the case if f,G,h are
polynomial and also if they are of compact support. In other cases other functions with similar pro-
perties can presumably be found. Now instead of (17.1) consider the modified system

dx = f(x)dt+Gdw, y = e~ n(x)dt +dv (17.2)

whqe a>0 is a small parameter. Note that the only thing which (17.2) does with respect to (17.1) is
to discount large y observations.

Now consider the estimation Lie algebra of the system (17.2).
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17.3. Theorem
If e=®™I" is differentially algebraically independent of f.G.h then the estimation Lie algebra of (17.2) is

(infinite  dimensional) solvable. To be more precise it is finite dimensional and solvable
mod(a'e ="V i + j=n) for all n.

Thus the yoga of the previous sections can again be applied and the behaviour of the resulting 2-
parameter family of filters as a goes to zero and n goes to infinity could be studied.
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